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Exploration of Gulf of Alaska Pacific cod (Gadus macrocephalus) stock 

dynamics for September Plan Team  
Steven Barbeaux 

Introduction 
This report presents alternative assessment models for the Gulf of Alaska (GOA) Pacific cod stock. The 

objective of this report was to provide the Plan Team and SSC with an overview of model and methods 

being developed for the Gulf of Alaska Pacific cod stock. This approach involves a number of 

simplifications compared to the relatively complex models presented in recent years for GOA Pacific cod. 

A goal was to disentangle interactions among modeled components, particularly the seasonal fishery 

selectivities, to ease interpretation. Growth and selectivity treatments were also simplified so that 

alternative hypotheses could be explored. Another benefit of model simplification was detailing data 

compilation issues and gaining familiarity with available data. New datasets (the AFSC sablefish longline 

survey index for Pacific cod along with length composition data from this survey) are also introduced. In 

the course of this study, over 150 models were developed and examined. This document represents a 

subset of models deemed to be most informative for discussion and stock management going forward. 

There has been wide-array of models presented over the past 16 years (see Amar and Palsson 2015 for a 

summary). While model fits to data have been reasonable, historical retrospectives over different 

assessments suggest that the recent models had quite different pre-1980 biomass estimates compared to 

others (Fig.1). The female spawning biomass for 1977-1987 from the 2014 and 2015 models was also 

more than double previous model results (Fig. 1). The large 1977 year class (Fig. 2) was estimated to be 

2.7 times larger than the next largest year class (2012), despite limited data suggesting such a large 

deviation. This large year class estimate in the selected 2015 stock assessment model configuration 

(hereafter referred to as the 2015 Model) apparently occurred by limiting the range of aging bias 

parameters. Data suggesting a high 1977 year class was limited to a pulse of fish observed in the longline 

fishery length composition data in during 1980 (consistent with the length of 3 year old Pacific cod). Data 

from the trawl fishery was sparse but failed to indicate a similar influx.  

Models presented here are intended as examples to stimulate discussion and help provide guidance rather 

than candidate final model configurations for management recommendations.  



  

2 

 

 

General Approach  
Stock Synthesis version 3.24U was applied.  To the extent practical, among the models examined, 20 

were selected to sets of hypotheses and/or model fits (Fig. 3).  Overall results are summarized in Table 1 

and Fig. 4. The main differences between all models below and the 2015 model are:  

1) Seasons were aggregated (annual data),  

2) All selectivities were modeled using the double normal option in SS, 

3) Fishery selectivities were constant over time, 

4) Ages were restricted to 12 ages with a 12+ group instead of extending 20 years 

5) Age determination bias was dropped from model estimation, 

6) Lengths were binned from 0.5 cm to 116.5 cm  at 1 cm increments, instead of to 109.5cm, 

7) Multinomial sample size for fishery composition data was set at the number of hauls or 200 

(instead of 400 from the 2015 Model), whichever was smallest, 

8) Age composition and size at age data were included,  

9) Conditional age at length data were excluded,  

10) Age of L0 in the von Bertalanffy model set to 0.5, 

11) The initial recruitment offset (R1 option in SS) was dropped. 

Alternative models considered: 

1) AFSC GOA sablefish longline survey (longline survey) index of Pacific cod abundance 

2) Length composition from the longline survey 

3) Model tuning using the Francis method  

4) M estimation 

5) Dome-shaped selectivity 

6) Estimating Q  

7) Time-varying fishery selectivity (different than “blocks”) 

8) Separate catchability and selectivity for pre-1993 bottom trawl survey data 

9) Removing pre-1990 bottom trawl survey data 

10) Excluding 27cm from survey data, and  

The Base Model - Model 16.6 
Model 16.6 is considered to be the most basic model presented in this here with subsequent model 

building from this initial framework (Fig. 3). The age-based model included ages 1 to 11 and an age 12+ 

group for all older fish. Note that the previous assessments had ages up to 20, but the oldest cod ever aged 

in the Gulf of Alaska was 14, and limited to a single individual. Of the 8,362 Pacific cod aged since 1987 

from the bottom trawl survey there have only been nine cod aged 12 years old or older. For this model 

there was assumed to be no aging error or bias in the age data.  

Natural mortality (M) was assumed M = 0.38 based on equation 7 of Jensen (1996) and ages at 50% 

maturity reported by Stark (2007). From Stark (2007) A50 = 8.539/1.963 = 4.35 and therefore M=1.65/A50 

= 0.38 following Jensen (1996). Maturity was calculated as a function of age following Stark (2007) with 

A50 at 4.3499 and slope of -1.9632. Fishing mortality was estimated through a hybrid method in which the 

Pope’s approximation provides initial values for an iterative adjustment of the continuous F values which 

then closely approximates the observed catch. These parameterizations were the same in the 2015 Model. 

For this analysis weight was fit in a two parameter lognormal linear model with no priors and starting 

values based on a linear regression of length at age data from the 1990-2013 bottom trawl survey data. 



  

3 

 

Unlike the 2015 Model there were no seasonal differences in weight at length included in the model, 

however final model results (Fig. 5) closely matched the average weight at length model used in the 2015 

Model. Growth was modeled using the original three parameter von Bertalanffy growth curve as in the 

2015 Model. All parameters were fit within the model with no priors and starting values based on fits to 

all available length at age data from the bottom trawl survey (Fig. 5 and Fig. 6). Age at L0 was set at 0.5 

cm. Using different ages at L0, between 0.5 and 1.5, were also explored but showed little influence on 

model results. Models using a four parameter Richards formulation were explored, but made little 

difference within the model and were not presented here.  

Recruitment was modeled as a standard Beverton-Holt recruitment curve with steepness assumed to be 

1.0 assuming no relationship between stock size and recruitment, Sigma-R was assumed to be 0.44, 

(based on a series of sensitivity runs with an earlier model, not shown), and a uniform prior on Ln(R0) 

with no R1 offset. Recruitment deviations were fit in two phases with main recruitment deviations 1977-

2015 fit in phase 1 and early recruitment deviations 1965-1976 fit in phase 2. Model 16.6 results are 

provided in Table 1. 

The AFSC summer bottom trawl survey number of fish was the single index of abundance used in this 

model. The survey was conducted tri-annually from 1984-1999 and biannually 1999-2015 (Fig. 7). 

Catchability (Q) was assumed to be 1.0 in this model. Model 16.6 had a poor fit to the bottom trawl 

survey index, particularly for years with large increases in abundance as in 1984, 1996, 2009, 2011, and 

2013 (Fig. 7). The estimates for these years were well below the observed values.  

Size composition data were collected for all survey years, the survey length composition data were binned 

from 0.5 cm to 116.5 cm at 1 cm increments. Initial models had a maximum size at 109.5 cm, but test 

runs showed this impacted results under differing assumptions on M, Q, and selectivity. We iteratively 

increased the size by 1 cm until the maximum size category no longer impacted model results. Length 

selectivity was fit as a single double normal curve (Fig. 8). This functional form is constructed from two 

underlying and rescaled normal distributions, with a horizontal line segment joining the two peaks. This 

form uses the following six parameters: 

1. Beginning of peak region (where the curve first reaches a value of 1.0), 

2. Width of peak region (where the curve first departs from a value of 1.0), 

3. Ascending “width” (equal to twice the variance of the underlying normal distribution), 

4. Descending width, 

5. Initial selectivity (at minimum length/age), and  

6. Final selectivity (at maximum length/age). 

All but parameter 1 (beginning of peak region) are transformed: The widths are log-transformed and the 

other parameters are logit-transformed. For this model the survey selectivity was restricted to be 

asymptotic with the two parameters controlling the downward limb of the curve (parameters 4 descending 

width and 6 final selectivity) fixed to force the curve asymptotic. The remaining four parameters were fit 

with bounded uniform priors. The multinomial sample sizes for the survey length composition data were 

set at 100 for all years. This was a strong assumption on the consistency of the surveys over the years to 

properly measure species composition of the surveyed population, even when sample sizes changed 

among years. Although survey timing was variable, particularly in the 1980s, we assumed a survey date 

of 0.583 (July 1), the same as the fisheries. SS3 did not allow for annually varying timing for the survey. 

The choice of asymptotic selectivity for the bottom trawl survey has substantial impacts on the results of 

the stock assessment model. It assumes (with a fixed catchability of Q = 1.0 and fixed mortality at 

M=0.38) that all fish above a certain size are fully available to the survey and with fixed catchability and 
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natural mortality will produce conservative estimates of recruitment and abundance. Different 

assumptions are explored in models presented below.   

Aged based and length based selectivities using non-parametric selectivity patterns were initially 

investigated for the bottom trawl survey composition data in models not presented here. In order to 

conduct “Jitter” and retrospective analyses the waypoints needed substantial bounding to function or 

created many local likelihood minima that made model fitting problematic. Results from the double-

normal were more easily interpretable and functioned better during “jitter” exercises in finding a 

consistent “true” minima. The logistic model was also explored for asymptotic selectivities, however the 

restricted double normal provided better fits in all cases and allowed for easy conversion to dome-shaped 

when needed. 

Age composition data for 1990-2013 were available and although they were included in the model 

likelihood (Fig. 5), they were not fit independently from the length composition data with selectivity 

being modeled as a function of length. Weight and length at age data were available for 1990-2013 and 

inform the growth model (Fig 10). 

Fishery dependent data were aggregated into three gear types: trawl, longline, and pot (Fig. 11). Unlike 

the 2015 Model, seasons were not implemented in this model. Catch estimates were available for 1977-

2015 for all three fisheries and match those used in the 2015 Model in aggregate. Equilibrium catch for 

the trawl and longline fisheries were set at 1,000 t and 2,000 t based on historic fish records (Major 1985). 

The pot fishery had 0 catch until 1987 and therefore equilibrium set at 0. In comparison the 2015 Model 

had equilibrium catch set at 5,600 t for the January-April trawl fishery and 0 for all others. This makes 

little difference in model results since catch was relatively low. Standard errors in all catch estimates were 

assumed to be 0.05 and fishery timing was set at 0.583 (the end of June) for all fisheries.   

Fishery catch length composition data were treated the same as the data used in the 2015 Model except 

once calculated, seasonally separated data were then collapsed into a single value per year and gear with 

proportions weighted by gear and seasonal catch biomass estimates (Fig. 12, Fig. 13, and Fig. 14). This 

method assumes that observer coverage is proportional to seasonal catch. The sample size was set at the 

number of hauls up to a maximum of 200 for each gear type and year, no tuning of the model was 

performed.  

Fishery length composition selectivity was fit for each gear as single double normal curves and for all but 

the pot fishery, restricted to be asymptotic with the two parameters controlling the downward limb of the 

curve (parameters 4 descending width and 6 final selectivity) fixed to force the curve asymptotic. For the 

pot fishery parameters 4 and 6 were fit within the model allowing for a dome-shaped selectivity. For all 

fisheries parameter 5, which controls the selectivity at the first length bin, was fixed at -999. This setting 

ignores the initial selectivity algorithm and simply decays the small fish selectivity according to 

parameter 3 (Fig 8).  

Length composition predictions fit the overall shape of the distribution across all years, however annual 

variability in the distributions and lack of flexibility in the chosen selectivity curves show some trends in 

the residuals. In general mean predicted lengths were reproduced (Fig.15), however the predicted length 

distributions were broader and missed the highest peaks of the distributions (Fig 16) as shown in the 

Pearson’s residual plots (Fig. 16). In addition the model does not fit the bottom trawl survey data well in 

years where a large number of small fish were observed such as 2009. The large number of small fish 

causes survey availability to fit above zero (S0.5cm*Q = 0.118) for the smallest fish (Fig. 8).  
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Addition of Sablefish longline data - Model16.6.0 
Model 16.6.0 had the same configuration as Model 16.6 except Gulf of Alaska AFSC Sablefish longline 

survey data were added (Fig. 18). These data included the Relative Population numbers (RPN) of Pacific 

cod as an index of abundance and Pacific cod length composition data for 1990 through 2015 (Fig 18). 

These data were provided by Dr. Dana Hanselman of the Auke Bay Laboratory and a description of the 

methods for the AFSC sablefish longline survey and how the datasets were developed can be found in 

Hanselman et al. (2015) and Echave et al. (2013).  

This index mirrors the trend observed in the bottom trawl survey for 1990 through 2015 with a decline in 

abundance from 1990 through 2008 and a sharp increase in 2009. Unlike the bottom trawl survey, the 

longline survey encounters few small fish (Fig. 19 and Fig. 20). The data reveal consistent and steep 

unimodal distributions with a decreasing trend in mean size since the mid-1990s, matching the trend 

observed in all three fisheries, but not in the bottom trawl survey (Fig. 21 and Fig. 16). Catchability (Q) 

for this index was set as a floating estimate with no bias adjustment. The multinomial sample sizes for the 

length composition data were set at 100 for all years.  

Selectivity for the longline survey length composition data was modeled using a single double normal 

selectivity curve with parameters 4 and 6 (see above) fixed such that selectivity was constrained to be 

asymptotic (Fig. 22). It was the opinion of the survey managers that the survey was well distributed 

throughout the Gulf of Alaska sampling across depths from 50 m to 1000 m and was therefore thought to 

be a thorough survey of adult Pacific cod in the region. Parameter 5 was set to -999 which ignores the 

initial selectivity algorithm and simply decays the small fish selectivity to near 0 as per parameter 3.   

Model 16.6.0 predictions of the longline survey index follows the 1990-2008 decline in abundance and 

although it does increase in 2009, the model fails to match the sharp increase in the data for 2009-2011 

(Fig. 18). Fits to the length composition data consistently underestimate the high peak of the mode and 

overestimates the abundance of fish larger than 75 cm (Fig. 23 and Fig. 24). For the other data 

components model fits were similar to that of Model 16.6 (Fig. 21 and Table 1). There was some 

degradation of the fit to the bottom trawl survey index, but the fit to the bottom trawl survey length and 

age data was improved (Table 2). Further the addition of the longline survey data improved the fit to the 

trawl length composition data, but degraded the fit to the pot and longline length composition data.  

Ten-year retrospective analyses (Hanselman et al. 2013) show a marked improvement in the Mohn’s rho 

and RMSE when the longline survey data were added with little impact on the Wood’s Hole rho (Table 3 

and Fig. 25), suggesting an improvement in stability in the most recent estimates with little effect on 

predictions of earlier data.  The effects of the large and uncertain recent year classes were still apparent 

with large deviations from the most terminal estimate in the first 6 years of the retrospective. 

Length and age composition sample size explorations - Model 16.6.1.2  
We implemented the Francis method (reference) for tuning the model and explore the model sensitivity to 

the length composition sample size as implemented in the R4SS package (Hicks et al. 2016). Model 

16.6.1.2 was a Francis method tuned Model 16.6.0. The model was tuned over three iterations, until the 

Francis weights diagnostics neared 1.0 for the length and age composition data.  

The Francis method resulted in adjustment factors between 0.07 and 0.74 (Table 4) and impacted the 

model with lower weighting of the length and age composition data. Fits to both survey indices were 

improved (Fig.26 and Fig. 27) with a decrease in the RMSE of bottom trawl survey by 14% and longline 

survey by 8% (Table 4). Fits to the trawl and longline fishery length composition were degraded (Fig.28) 

with 30% and 27% decreases in harmonic mean effective Ns. The bottom trawl survey length and age 
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composition had a 21% and 25% decrease in the harmonic mean effective Ns. Fit to the pot fishery length 

composition data did not change as much as the other fisheries, with an 8% decrease in the effective 

sample size. The harmonic mean effective N for the longline survey length composition increased by 16% 

indicating an overall improvement to the longline survey data.  

The largest impact to the model was the reduction in the magnitude of the 1973 and 1977 year classes 

(Fig 25). This was a direct result of down-weighting the longline fishery composition data where fish of 

sizes consistent with these year classes were most strongly observed. The bottom trawl survey index did 

not see an increase in abundance consistent with such large year classes and therefore the re-weighting of 

the model components settled on lower recruitments for these years. The 2011 and 2012 year classes were 

similarly diminished as they had most strongly been observed in the trawl and longline fishery and 

bottom trawl survey length composition data, but less strong in the pot fishery and longline survey length 

composition data. The change in the model estimates of early cod abundance was counter to the 

prevailing view that there was a large increase in cod starting in the 1980’s. This is likely the result of 

reduced weight of the early fishery length composition data weighting causing the model to over fit the 

early trawl survey index data, which shows a stable to declining trend for this time period. It should be 

noted that the bottom trawl survey index data prior to 1990 are considered problematic because methods 

differed from the methods employed since 1990. This issue will be addressed below.  

Exploring catchability, natural mortality, and dome-shaped selectivity  
Five models were developed that have different assumptions on catchability, natural mortality, and 

selectivity. In the models presented above we assumed asymptotic selectivity for all survey selectivities, 

M = 0.38, and bottom trawl survey Q = 1.00. This is a compromise which provides conservative model 

results in comparison with if these were allowed to be fit freely in the model without strong constraints. 

For the models presented in this section we build on Model 16.6.1.2 using the same tuned settings so that 

model likelihoods and fits could be readily compared.  

Model Model parameterization 

16.6.2.1 Q Fit bottom trawl survey Catchability (Q) with an uniform prior  

16.6.2.2 M Fit natural mortality with a normal prior mean = 0.38,stedev  

=0.1 

16.6.2.3 S Allow dome-shaped selectivity 

16.6.2.4 QM Fit bottom trawl survey catchability with a uniform prior and natural 

mortality with a lognormal prior M=0.38, CV=0.1 

16.6.2.5 QMS Fit catchability, natural mortality as above, and allow dome-shaped 

selectivity 

 

In Model 16.6.2.1Q the bottom trawl survey catchability (Q) was fit in the model with an uninformative 

prior. Catchability above 1.0 assumes an abundance (conditioned on selectivity) lower than survey 

estimates resulting in lower recruitment and higher estimated fishing mortality. Allowing Q to be fit in the 

model improved fits to all of the bottom trawl survey data components and the longline survey size 

composition, but degraded the fit to all other components (Table 5). The overall likelihood improved by -

79.28 with the inclusion of this single parameter, however log catchability was estimated at 1.047 

(Q=2.85; Fig. 30) reducing the biomass on average 24% from Model 16.6.1 and 9% lower on average 

than the raw survey estimate (without considering selectivity). The better fits to the bottom trawl survey 

index and length composition data were achieved by reducing overall biomass and increasing estimated 

fishing mortality (Fig. 30). The effect of allowing Q to increase was not only a reduction in overall 

abundance across all ages, but also a reduced proportion of fish at older ages (Fig. 31). 
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In Model 16.6.2.2M natural mortality (M) was fit in the model with an informative normal prior having a 

mean of 0.38 and standard deviation of 0.1. This model fits M at 0.81 (Fig. 30), well above most 

reasonable estimates of M in the literature for this species (Table 6; A’mar and Palsson 2015). All data 

components, except the pot fishery length composition data were fit better than in Model 16.6.1.2 for an 

overall improvement on the objective function of -108.59. The majority of this improvement was in a 

better fit to the length and age composition data from the two surveys. Both the longline and survey index 

fits were also improved (Table 5). This assumes higher R0 and B0 (Fig. 32) allowing higher recruitment 

and higher overall abundance in the model estimates. This model assumes a much higher proportion of 

young fish in the population (Fig. 31) in aggregate across years, the sum of the apical F was slightly lower 

that Model 16.6.1.  

In Model 16.6.2.3S we allow all selectivities, except for the longline fishery to be dome-shaped fitting 

parameters 4 and 6 in the double normal selectivity curves with uninformative priors (Fig. 33). The 

longline fishery remained asymptotic to provide stability to the model. Reviewing the distribution of the 

longline fishery (Fig.34 and Fig. 35) shows it has the widest spatial extent and is deeper on average than 

either trawl or pot where larger cod should be encountered. The raw length frequency data (Fig. 20) 

shows a larger proportion of fish > 80 cm in the longline fishery. The addition of the 6 selectivity 

parameters improved the fit to the model by -127.1. Allowing for dome-shaped selectivity showed a 

greater improvement to both surveys than either fitting M or Q. Improvement was also attained in the fits 

to the composition data for all but the pot and longline fishery length composition data. The dome-shaped 

selectivity in the longline survey removed the pattern of higher positive residuals in the larger fish (Fig. 

33). Allowing for dome-shaped selectivity in the surveys and fisheries allows a higher biomass at the 

fixed natural mortality by assuming a larger portion of the population are not observed. This model places 

greater than 5% of the pacific cod population biomass in the 12+ age group and assumes there is a cryptic 

elder component of the stock resulting in a much higher historic biomass estimates and much lower 

fishing mortality estimates than Model 16.6.1. The sum of the Apical Fs in this model closely follow 

those produced in the 2015 Model (Fig 31). Estimates of both R0 and B0 were also similar (Fig. 35). 

Although initial abundance estimates are much lower (Fig. 32), the proportion of biomass by age in 

aggregate across all years considered also closely matches the 2015 Model (Fig. 31). This model produces 

the highest historical biomass estimates of all models evaluated. 

Model 16.6.2.3QM fits both catchability and natural mortality within the model. Catchability was 

parameterized with a uniform prior and natural mortality as a normal prior with a mean of 0.38 and 

standard deviation of 0.1.  The model fit M at 0.69 (Fig 35), substantially higher than independent 

estimates of M for pacific cod. Log catchability was estimated at 0.634 (Q=1.89). The improvement in fit 

from Model 16.6.2.2 M with the addition of 1 parameter (Q) was less than 0.4 overall (Table 1 and Table 

5), yet the model results were substantially different. The model fit the bottom trawl survey index better (-

5.26 to -3.35) than Model 16.6.2.2M, as expected, however it fit worse to the longline survey index data 

(-4.71 to -2.76). In addition improvements to the longline survey, trawl, and pot fishery length 

composition and bottom trawl age composition fits were counteracted by worse fits to the trawl survey 

and longline length composition data. Although the positive residuals on older fish in the longline survey 

persisted in this model, they were less pronounced than in models in which M was not fit (Fig. 33). As 

one would expect, the model predictions were intermediate of Models 16.6.2.1Q and 16.6.2.3M (Fig. 31 

and Fig. 32) as the model was balancing the effects of Q and M to achieve the best fit (Fig. 30)  

Model 16.6.2.3QMS fits both catchability and natural mortality within the model and allows selectivity 

for the trawl and pot fisheries and bottom trawl and longline surveys to be dome-shaped. As in the 

previous model, catchability was parameterized with a uniform prior and natural mortality as a normal 
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prior with a mean of 0.38 and standard deviation of 0.1. In this model, the same as Model 16.6.2.3S, the 

six parameters controlling the downward arm of the double normal for the trawl fishery and bottom trawl 

and longline surveys were fit allowing the shapes to become dome-shaped (Fig. 33). This model produced 

the best fit of all the models evaluated. The addition of the 6 parameters improved the model by -41 

likelihood points above Model 16.6.2.4QM (Table 1). The model fit M at 0.5 (Fig 30). A natural mortality 

of 0.5 was higher than that produced by the Jenson (1996) method (M=0.38), but the same as estimated 

by Thompson and Zenger (1995), and lower than 5 of the 12 estimates retrieved from the literature (Table 

6). Log of catchability was estimated at 0.49 (Q=1.64; Fig. 30). Selectivity at larger sizes (>70 cm) was 

higher in this model than in Model 16.6.2.3S showing the influence of both M and Q on model fitting.  

All data components, except Longline survey length composition and bottom trawl survey index, were fit 

better than any other 16.6.2 models. The fit to the longline survey length composition was surpassed by 

Model 16.6.2.3S and the fit to the bottom trawl survey was only surpassed by the two other models that 

fit catchability (Models16.6.2.1Q and 16.6.2.4QM).  Although Q was greater than 1.0 due to selectivity 

estimates the total biomass was on average 182% higher than raw bottom trawl survey estimates across all 

surveyed years  (Fig. 36) and 151% higher than estimates from Model 16.6.1 with Q=1.0. Unlike Models 

16.6.2.3S and the 2015 Model which had a significant proportion (~6%) of population biomass in the 12+ 

age group, the higher M in Model 16.6.2.5QMS had on average less than 2% of the population biomass in 

the 12+ age group. Virgin female spawning biomass (B0) was estimated at near 200 kt, below the 300 kt 

estimate from the 2015 Model, but above the 184 kt from Model 16.6.1. R0 was estimated at the third 

highest value after the two other models (16.6.2.2M and 16.6.2.4QM) that estimated higher natural 

mortality. 

Model 16.6.3 
Model 16.6.3 follows the same configuration as Model 16.6.1.2 using the same Francis method 

adjustment factors, but differs in having annually varying selectivity parameters for the trawl and longline 

fisheries and time blocks for the bottom trawl survey (Fig. 37). The Francis method adjustment factors 

were retained from Model 16.6.1 so that model likelihoods could be readily compared. For trawl and 

longline fisheries parameters 1, 2, and 3 were allowed to vary annually using multiplicative deviations 

between 1977 and 2015 and 1978 and 2015 with a standard deviation of 0.2. Parameters 1, 2, and 3 of the 

bottom trawl survey length composition selectivity were allowed to differ between time blocks 1977-1993 

and 1994-2015. Survey selectivity was allowed to change after 1993 when the survey changed from 30 

minute to 15 minute tow durations. Although models with annually varying pot fishery selectivity 

parameters were evaluated they showed no appreciable improvement in fit and therefore not presented 

here.  

The addition of time varying selectivity added 234 “parameters” to the model, but only decreased the 

objective function by -58.57 points. However, 231 of these parameters were penalized random deviations 

on the main selectivity parameters for the fishery selectivities and should not be considered true 

parameters for comparisons of log likelihoods and AIC analyses of model fit.  As would be expected the 

longline and trawl fishery length composition fits improved as well as the fit to the bottom trawl survey 

age composition and longline survey length composition. Fits to both survey indices and all other length 

composition data were slightly degraded (Table 7).  

The predicted results from Model 16.6.3 were similar between Model 16.6.1 and Model 16.6.3 (Fig. 37), 

particularly for the more recent portion of the time series. The main difference in predictions were in 

higher initial (1977-1985) spawning biomass levels (Fig. 38) and fishing mortality in the Mid-1990s (Fig. 

39 and Fig. 40). Neither R0 nor virgin spawning biomass for Model 16.3.1 and Model 16.6.2 were 

substantially different at R0 = 0.22 log (billions) and 0.23 log (billions) and B0 = 184.63 kt and 197.8 Kt.  
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Similar results would likely be achieved by fixing selectivity in both the longline and trawl fisheries after 

1990 when the domestic fisheries started while greatly reducing the number of parameters in the model, 

similarly there was little difference in the bottom trawl survey selectivity for the two time blocks and 

these could be discarded with little to no impact on model results.   

The retrospective analysis of female spawning biomass resulted in a slight increase in the Mohn’s rho  

from 0.07 for Model 16.6.1 to 0.08 in Model 16.6.3, Woods Hole rho from 0.001 to -0.003, and similarly 

negligible improvement in retrospective RMSE from 0.041 to 0.040. The divergence from the final results 

back to 2008 were still apparent and due to the exceptionally large recruitments observed in this time 

period. 

Alternatives for the pre-1993 bottom trawl survey data - Model 16.6.4.1 and Model 16.6.4.2 
Differences in survey methods support treating earlier surveys differently than later surveys. The 1984 

and 1987 bottom trawl surveys were conducted by Japanese researchers using different trawl gear than 

used in later surveys. Prior to 1996 survey haul duration was 30 minutes, while the 1996 and later surveys 

had a 15 minute duration. The 2015 Gulf of Alaska walleye pollock stock assessment (Dorn et al. 2015) 

excludes the pre-1990 trawl survey data from the stock assessment model. Model 16.6.4.1 mirrors this 

approach with the 1984 and 1987 trawl survey data not included in the model and the block selectivity for 

the bottom trawl survey was also removed.  

In the 2015 Model trawl survey catchability was set at 1.0 for the 1996-2015 surveys and a linear 

adjustment was fit with a uniform prior for earlier surveys. In addition separate catchability curves for the 

length composition data were fit in time blocks: 1977-1989, 1990-1995, 1996-2006, and 2007-2015. 

Model 16.6.4.2 mirrors this approach with adding a single parameter linear adjustment to catchability for 

pre-1996 surveys with a uniform prior and two blocks for survey selectivity: 1977-1995 and 1996-2006.  

For this model catchability for 1977-1993 was fit at 1.75, higher than 1.25 fit in the 2015 Model. 

For the likelihoods of the non-bottom trawl components, the two models end up being less than 1 point 

different from each other and six likelihood points different from Model 16.6.3. Fits to the survey data 

between model 16.6.4.2 and 16.6.3 differed by -8 likelihood points. Across all data components Model 

16.6.4.2 differed from Model 16.6.3 by -12 points for 1 additional parameters. Taking out or fitting the 

early trawl survey data reduced the fit to the longline survey index between -1 and -1.5 points. The fits in 

effect did not change between the two alternative configurations, and showed a minor improvement to 

Model 16.6.3.  

Model 16.6.4.1 with the bottom trawl survey data removed demonstrated a difference in early recruitment 

from Model 16.6.3 and 16.6.4.2. Model 16.6.3 and Model 16.6.4.2 had well above average 1980 year 

class and stronger 1981-1983 year classes than Model 16.6.4.1 (Fig. 41). In addition predictions for R0 

and B0 were higher in Model 16.6.3 while in Model 16.6.4.1 and Model 16.6.4.2 there was little 

difference between these values (Fig. 41). Higher recruitment in Models 16.6.4.2 resulted in higher 

abundance and biomass in the mid-1980s in the models retaining the early survey data. In effect there 

were only minor differences in the results from these two alternative models.  

Model 16.6.11S Model 16.6.15QM, Model 16.6.20, and Model 16.6.22QMS 
These set of models were conducted to evaluate how the removal of the 1984 and 1987 survey data have 

on the fitting parameters in Models 16.6.1, 16.6.2.3S, 16.6.2.4QM, and 16.6.2.5QMS. Model 16.6.20 was 

parameterized the same as Model 16.6.1 and Model 16.6.22 was parameterized the same as Model 

16.6.2.5QMS without the 1984 and 1987 bottom trawl survey data. Model 16.6.11S was parameterized 

the same as model 16.6.2.3S and Model 16.6.15 was parameterized the same as Model 16.6.2.4QM, 
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except with annually varying selectivity as parameterized in Model 16.6.3 and without the 1984 and 1987 

bottom trawl survey data. 

Differences in parameter fits are shown in Figure 42. For the models where M and Q were not fit the 

impact of removing these data were consistent. For all but one modeling pair the differences between 

parameters were minor. In each pair the results were similar in that recruitment in the early 1980s was 

reduced when the 1984 and 1987 trawl data were removed (Fig. 43) resulting in lower abundance in the 

mid-1980s. There was also a consistent decrease in B0 between the models with and without the 1984 and 

1987 trawl survey data. The largest changes were observed in the parameters between Model 16.6.2.4QM 

and Model 16.6.15QM (Q and M fit and asymptotic selectivity) with shifts in both natural mortality and 

catchability. This in turn resulted in a substantial increase in R0, a decrease in initial Fishing mortalities 

for the longline and trawl fisheries, and decline in the B0. In addition overall recruitment and abundance 

was reduced throughout the time series in response to these changes. Where selectivity was allowed to 

become dome-shaped but Q and M were fit (Models 16.6.2.5QMS and Model 16.6.22QMS) no similar 

changes in Q and M were encountered and the only change of substance between these modeled pair was 

the CV of young fish parameter. Retrospectives for all models with Q or M fit were abysmal (Table 3). 

Removing age 1 (<27cm) fish from bottom trawl survey – Series 16.7 
The bottom trawl survey data on occasion encountered extremely high numbers of age 1 fish, the 

magnitude of which is not always observed in following years. In previous stock assessments the 

approach to dealing with these problem fish was to remove them from the data. This series of models 

looks at the effects of removing these fish from some of the models explored above. 

In every case the removal of the small fish caused the fit to the trawl survey selectivity curve to go to 0 

for the young fish where it had previously been above 0 even for the smallest fish (Fig. 44). The fit all the 

other length composition data remained nearly the same and the fit to the > 27cm survey length 

composition data remained rather poor. Although a numerical comparison of fit was not done between the 

two sets of  models for the bottom trawl survey abundance index, a visual inspection of the fits (Fig. 45) 

appears to show a more reasonable fit was achieved to this index when the age 1 fish were removed. In 

every example for the growth parameters L0.5 was increased, Linf was decreased, K increased, CV of 

young fish decreased, and CV of old fish increased (Table1 and Fig. 46). In every case R0 decreased and 

B0 increased (Fig. 47) while initial Fs decreased with the removal of the Age 1 fish from the bottom trawl 

survey data. In all cased recruitment and abundance increased with slight decreases in F in response (Fig. 

47 and Fig. 48).  

The retrospective analyses for these models shows an increase in all of the metrics, a visual inspection of 

the predictions show a more consistent positive bias in the models without the small fish for the end years 

(Fig. 49). Model 16.7 was particularly poor with a Mohn’s rho at 0.49.  

Summary and conclusions 
The decreasing trend in mean size of Pacific cod in the catch since the 1990s is a concern for this stock as 

it has been observed in every fishery. While possible, a simple trend in selectivity across all of the fleets 

seems unlikely. A look at length at age over time (Fig. 50) shows that growth has apparently been stable. 

Consequently, it seems that the trend may reflect a reduction in the number of older fish in the stock. The 

models examined to date suggest fishing mortality has increased and abundance declined over this period. 

The longline survey size composition data suggest increased recruitment in the near term. However, these 

signs have yet to appear in the fisheries data and the apparently strong 2012 year class remains highly 

uncertain.  
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Our results show that sampling effort matters. Fits to the historical data are affected by changing the 

sample size of the length composition data. The Francis method likely undervalues the fishery length 

composition data and relies too heavily on the bottom trawl survey abundance index when we know that 

there are issues with the reliability of this dataset in the early years.  

Second, a choice needs to be made on how to treat selectivity, dome-shaped assumes a portion of the 

older fish are cryptic and never observed, however using asymptotic selectivity without fitting Q and M 

likely results in an underestimate of abundance as the model reduces recruitment to fit the lack of older 

/larger fish in the data.  Fitting either Q or M by itself results in estimates that appear outside the bounds 

of what is reasonable, this also greatly inflates the abundance of cod, in addition retrospective patterns 

become very poor/biased as the influx of new recruits in recent years reduces the estimates of each. 

Although not presented models fitting Q and M where the young fish are removed results in more stable 

retrospectives, although still rather poor.  Inflated Q assumes lower abundance, inflated M shifts the 

population to younger fish and inflates the abundance. The worst retrospective bias was observed where 

M and Q were fit and selectivities were allowed dome-shaped curves. Again the model was sensitive to 

the influx of new recruits in recent times. 

Future work will evaluate more fully models with aging error and conditional age at length data. 

Preliminary indications suggest that these model additions have much effect on model outcomes. Some 

models not presented here were fit with aging bias free in the model and tended result in quite a 

substantial negative bias in the older fish at -2 to -4 years. Such results were not substantiated by the age 

and growth lab, so this was left out of all models presented. The 2015 model had had this parameter 

(older age bias) constrained to positive values.  

Expanding on Models 16.6.11, 16.6.20, 16.6.22, and Model 16.7.3 and examining conditional age at 

length data seems to hold the most promise for this year’s SAFE report. Model 16.3.20, with time varying 

selectivity restricted to the older fishery data, may also be worth considering.  
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