Results of the winter 2016 Acoustic-Trawl Surveys of Walleye Pollock in the Gulf of Alaska

Sarah Stienessen & MACE Staff
Midwater Assessment and Conservation Engineering
Alaska Fisheries Science Center

Length Distributions

Length Distributions

Shumagin
Islands
Historical
Pollock Size
Composition

Shelikof and Marmot

Shelikof

Marmot Bay

Length Distributions

Length Distributions

Shelikof Strait Historic Pollock Size Composition

Moored echosounders: applications for fisheries assessment work

- Low-power battery-powered 70 kHz split-beam echosounder
- Deployed on seafloor up to 1 year
- Trawl-resistant mooring design
- Easily deployed and recovered
- Long time series of abundance and behavior in moored location.

Applications in GOA

- Shelikof Strait, Gulf of Alaska Evaluate whether survey comparable pollock abundance estimates are possible with bottom-mounted echosounders (deployment: Feb May 2015).
- Resurrection Bay, GOA determine optimal time for ship-based pollock spawning surveys in Kenai Bays (deployment: Dec 2015 – May 2016).
- 3. Sanak Is. ("Shumagin" survey, GOA determine optimal time for ship-based pollock spawning survey (deployment *Nov 2016 May 2017*).

Observations in GOA pollock spawning sites (to estimate timing of peak spawning)

First Mooring Project – Spring 2015

Shelikof Strait (Gulf of Alaska), pollock spawning grounds

Is a survey-comparable pollock abundance estimate possible w/moorings?

Experimental design:

- Study Area: Shelikof Strait acoustic-trawl survey area of pre-spawning walleye pollock (March 2015; NOAA ship Oscar Dyson)
- 3 ea bottom-mounted echosounder moorings (Simrad 70 kHz WBAT; Feb-May 2015 = Dyson deployment, charter vessel recovery)
- 4-5 ea mini-surveys (50 nmi²) at each mooring site
- Retrospective analysis of last 20-years of Shelikof survey time series to optimize mooring number and placement(s).

Shelikof Result 1. Moored echosounders can describe fish abundance over a broad area.

Moorings and the Oscar Dyson 50 nmi² mini-surveys provide comparable results.

- Pre-spawning pollock backscatter levels peak in mid-march
- Dyson mini-survey pollock estimates (red dots) match mooring estimates
- Very high, significant correlation between 2 data sets validates mooring approach.
- ~36% offset in data sets due to echosounder frequency differences and in downlooking (ship) vs up-looking (mooring) pollock target strengths

Shelikof Result 2. Retrospective analysis of vessel survey time-series data determined appropriate mooring number and location(s) to estimate pollock abundance index.

Analysis using 20 yrs of survey data suggests 5 moorings at same 5 locations (below) accurately predicted annual survey pollock backscatter

Result with actual mooring data was within ~ 10 % of the 2015 Dyson survey estimate!

Retrospective Analysis approach....

- 1. Simulate mooring using Dyson survey data (mooring = 50 nmi² Dyson subsample data)
- 2. Search for mooring location(s) to best predict pollock backscatter for entire survey area
- 3. Mooring location(s) are selected "out-of-sample" (i.e., w/o using data from that year)
- 4. Predict annual survey-wide pollock backscatter from the selected mooring location(s)

Maturity

Weight at Length

