Norton Sound Red King Crab SAFE2017

Sept 21 2016

Toshihide "Hamachan" Hamazaki, Jie Zheng Alaska Department of Fish & Game Division of Commercial Fisheries

NSRKC Stock Assessment Model Modeling process Available Data & model fit

7 months

NSRKC Stock Assessment Model Modeling process Available Data & model fit

NSRKC Major Modeling Issues

- Under the size invariant M, the model overestimate abundance of large sized (> 123mm) crab.
 - Current Assumption: Higher M for large sized (> 123mm) crab
 - Pro: Model fits data better
 - Con: Biologically implausible
 - Alternative Assumptions
 - Large sized crab move out of fishing-survey area
 - Extended surveys did not find large crabs
 - Dome-shaped survey-commercial fishery selectivity was not supported by the model (see previous SAFE)
 - Crab does not grow large (non-linear growth)
 - Alternative model 1
 - Molting probability is not time invariant
 - Alternative model 2
 - M of only Largest (> 134mm) is high
 - Alternative model 3

NSRKC Stock Assessment Model OFL Issue

How do we calculate B and OFL?

OFL past

- 2015 OFL formula: Use projected Feb 01 biomass
 OFL = (1-exp(-F))B_w
- 2016 OFL formula: Use projected summer biomass with zero winter fishery

 $OFL = (1-exp(-F))B_s \quad B_s = (B_w)exp(-0.42M)$

• 2017 CPT-SSC proposed OFL formula: Assume X% of OFL from winter fishery (X: 8%, or average winter harvest %)

Responses to CPT and SSC

- 2017 CPT-SSC proposed OFL formula: Assume X% of OFL from winter fishery (X: 8%, or average winter harvest %).
 - then summer OFL is (1-X)% of OFL

 $(1-X)OFL = (1-exp(-F))B_s \quad B_s = (B_w - X \cdot OFL)exp(-0.42M)$

Solve this: $OFL = \frac{B_w(1-exp(-F))exp(-0.42M)}{1-X+X(1-exp(-F))exp(-0.42M)}$

Applying to 2016 OFL, B_w = 4.654, M = F = 0.18 OFL = 0.711 (2016 SAFE) OFL = 0.763 (X = 0.08, 8%) OFL = 0.822 (X = 0.16, 16%: prop winter harvest in 2016)

Responses to SSC

• Does the timing indicate that crab may go "missing" in association with the molting period?

- Satellite tag deployed in March 2016, Bob?

- The SSC noted relatively high proportions of 134+ mm CL crab in the summer com catches 1980-1982. Investigate source data.
 - Data are probably lost. Even Doug (retired) didn't know that ADFG Kodiak was in charge for NSRKC back in 1970-80s...
- The SSC was very interested in the conflicting observations about molt timing in Apr/May versus Aug/Sept.
 - There was no direct observation for molt timing in Apr/May
 - All observation-data suggest molt timing in Aug/Sept

Responses to CPT and SSC

- Evaluate whether using a growth function (slow down growth).
 - Alt. Model 1
- Consider non-parametric molting probability curve with a random walk penalty.
 - Only random walk considered: Alt Model 2.
- Evaluate higher M only to 134+ mm.

– Alt. Model 3

- Separate summer fisheries in 2 periods
 - Alt. Model 4

- Alternative Models:
- Model 0: Default 2016 SAFE model
- Model 1: Non linear growth, M = equal for all lengths
- Model 2: Random walk molting prob
- Model 3: High M only for 134+ mm length group
- Model 4: Separate fishery selectivity

• Model 1: Non linear growth, M = equal for all lengths

- Little evidence of "slow" growth

• Model 2: Random walk molting prob

- Model 3: High M only for 134+ mm length group
- Model fit was worse.

Model 0

- Model 4: Separate fishery selectivity
- No statistical difference between the two selectivity

- Model 0: Default 2016 SAFE model
- Model 1: Non linear growth, M = equal for all lengths
- Model 2: Random walk molting prob
- Model 3: High M only for 134+ mm length group
- Model 4: Separate fishery selectivity

Model	Number of	Total	TSA	St.	TLP	WLP	CLP	OBS	REC	TAG	Dev.
	Parameters			CPUE							molt
0	65	315.0	9.0	-22.1	104.5	42.5	59.5	36.0	11.6	74.7	
1	69	349.9	15.1	-21.8	112.4	45.3	91.4	34.3	14.5	61.8	
2	104	265.2	9.3	-21.8	71.4	40.9	48.6	27.6	12.3	71.7	5.2
3	65	352.3	9.5	-22.3	117.1	45.3	79.6	36.3	12.5	74.3	
4	66	328.4	9.0	-22.3	104.6	42.5	59.5	35.5	11.7	88.1	

Negative log-likelihood

- Model 0: Default 2016 SAFE model
- Model 1: Non linear growth, M = equal for all lengths
- Model 2: Random walk molting prob
- Model 3: High M only for 134+ mm length group
- Model 4: Separate fishery selectivity

- Model 0 seems to be sufficient for 2017 Assessment.
- CPT-SSC finalize OFL formula.

- Model 4: Separate fishery selectivity: Tagging data issue
 - All tagged crabs are recaptured by fisheries.
 - Observed length frequencies of recaptured crab are function of
 - Molting probability
 - Growth transition increments
 - Fishery size selective recapture probability
 - Tag recovery data must be separated by each fishery selectivity periods.
 - The more fishery selectivity separation, the less recovery data for each fishery period.