Adjusting station-level catchability using side-by-side trawl studies and environmental information

William Stockhausen
Alaska Fisheries Science Center
NOAA/NMFS

Estimating NMFS station-level trawl efficiency using side-by-side trawl studies and environmental information (1)

 Somerton et al. (2013) estimated NMFS survey haul efficiency for snow crab using side-by-side BSFRF survey tows

$$C = D \cdot r \cdot A \cdot S$$

$$\Phi \equiv \frac{C_a}{C_a + C_b}$$

and with a little math

$$\Phi = \frac{r_a}{r_a + R_A \cdot R_S}$$

and a little more

- D = crab density in length bin z at station h
- r = trawl efficiency in length bin z at station h
- A = area swept at station h
- S = catch sampling proportion at station h
- C_a = catch in length bin z at station h for AFSC survey
- C_b = catch in length bin z at station h for BSFRF survey

•
$$D_a \equiv D_b$$

•
$$r_b \equiv 1$$

- $R_A = A_b/A_a = \text{ratio of swept areas}$
- $R_S = S_b/S_a$ = ratio of sampling fractions

$$logit(\Phi) = ln(r_a) + ln(R_A \cdot R_S)$$

Estimating NMFS station-level trawl efficiency using side-by-side trawl studies and environmental information (2)

 Somerton et al. (2013) fit the following model for using generalized additive models (GAMs)

$$logit(\Phi) = ln(r_a) + ln(R_A \cdot R_S) = \Omega_1(W) + \Omega_2(X)$$

- Ω = smooth, nonparameteric functions
- *W* = carapace width
- *X* = set of environment variables

$$r_a = \exp[\operatorname{logit}(\Phi) - \ln(R_A \cdot R_S)] = \exp[\Omega_1(W) + \Omega_2(X) - \ln(R_A \cdot R_S)]$$

Somerton et al. (2013) Results

Mean Trawl Efficiency

Adjusting station-level catchability using side-by-side trawl studies and environmental information (3)

• Somerton et al. (2013) fit the following model for using generalized additive models (GAMs)

$$logit(\Phi) = \Omega_1(W) + \Omega_2(X)$$

- Ω = smooth, nonparameteric functions
- *W* = carapace width
- X = set of environment variables

Somerton et al. (2013), using kriging to interpolate grain size

Sex	X	R ²	Deviance explained
male	depth, grain size	49%	45%
female	depth, grain size	55%	54%

Somerton et al. (2017), using acoustically-determined sediment characterization variables Q₁, Q₂, Q₃

Sex	X	R ²	Deviance explained
male	depth, Q_1 , Q_2 , Q_3		52%
female	depth, Q_1 , Q_2 , Q_3		73%

Adjusting station-level catchability using side-by-side trawl studies and environmental information (4)

• So can estimate AFSC trawl efficiency on a haul basis as

$$r_a = \exp[\Omega_1(W) + \Omega_2(X) - \ln(R_A \cdot R_S)]$$

- Could inflate AFSC survey catches by station to account for local environmental effects (by $\exp[\Omega_2(X)]$)
 - would estimate size selectivity (and availability) in assessment model
- Could inflate AFSC survey catches by station to account for all efficiency effects (by $\exp[\Omega_1(W) + \Omega_2(X)]$)
 - would treat inflated survey catches as estimates of population abundance
- Would not include BSFRF surveys in assessment model fits(?)
- One wrinkle: how to treat $ln(R_A \cdot R_S)$ at stations without side-by-side information?