AIGKC harvest strategy development

Prepared by:

Benjamin Daly, MSM Siddeek, Jie Zheng, Mark Stichert

Current Regulations: 5 AAC 34.612

(a)

TAC fixed in regulation

- east of 174° W long.: 3.31 million pounds
- west of 174° W long.: 2.98 million pounds

(b) The department may reduce the harvest levels in (a) of this section based on the best scientific information available, in considering the reliability of the estimates and performance measures, uncertainty as necessary to avoid overfishing, and any other factors necessary to be consistent with sustained yield principles.

Assessment Model

- Previously a Tier 5 stock, average catch OFL
- Stock assessment model approved by CPT/SSC in May/June 2017
 - Now Tier 3
 - Estimates of recruits, mature males, legal males
- State now developing a harvest strategy
 - Now have population estimates from model
 - Goal: TAC respond to population fluctuations
 - Present to BOF at March meeting

Timing mismatch of assessment and TAC setting

- OFL/ABC recommended by CPT in May
- Council/SSC approves OFL/ABC in June
- TAC set in July
- Fishery starts in August

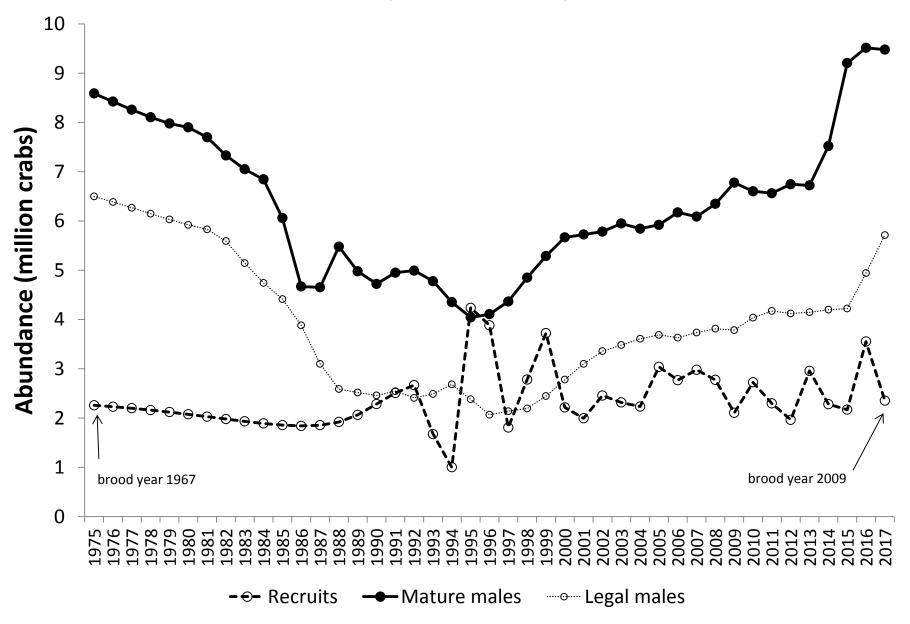
Because the CPT recommends OFL/ABC in May and the fishery ends in May, the ongoing fishery data (most current) is not included in the OFL/ABC.

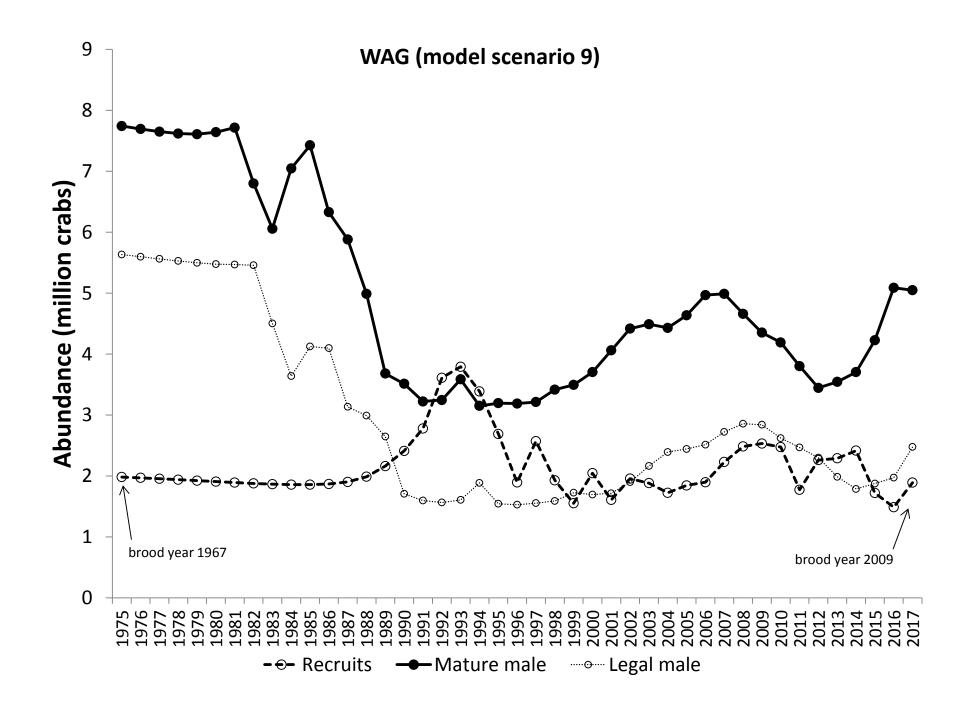
However, model simulations CAN be completed after the OFL/ABC are approved by the CPT/SSC (but before TAC setting) with the most recent fishery data.

As such, OFL/ABC is lagged by 1 year, but population estimates are not.

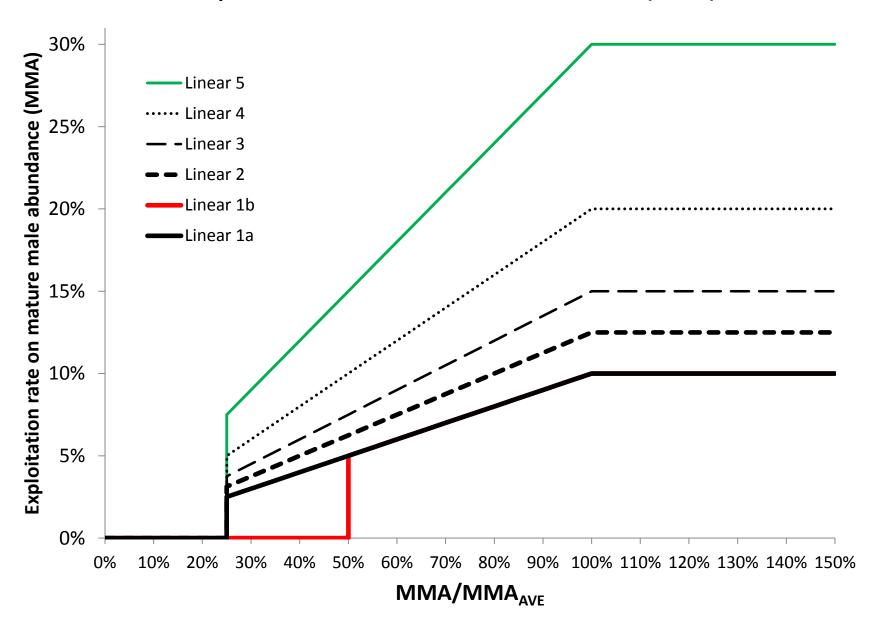
Harvest Strategy Core Elements

- 1. Threshold for opening/closing fishery
- 2. Exploitation rate on mature males
- 3. Maximum allowable exploitation rate on legal males

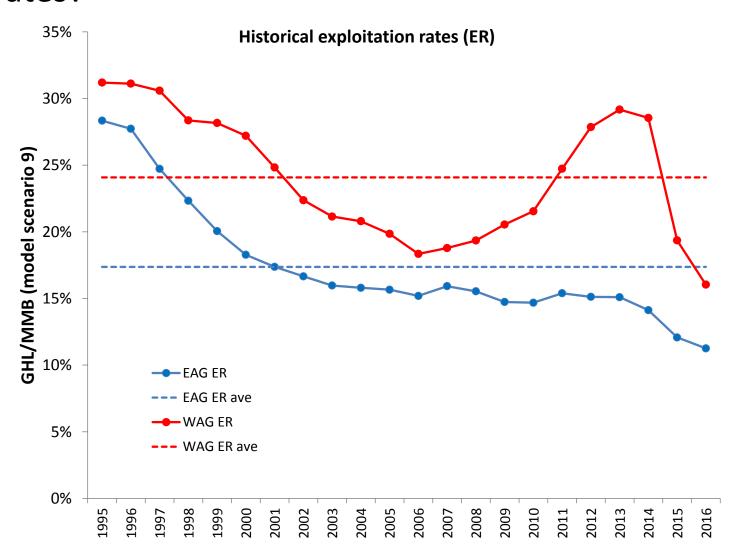

Threshold for opening fishery


- Current year point estimate relative to longterm average
 - $-MMA/MMA_{ave} = 25\%$?
 - Follows federal assessment F_{OFL} control rule:
 "critical biomass threshold"
 - Separate for EAG + WAG
- What years should be used for the long-term average (MMA_{ave})?

What years should be used for the long-term average (MMA_{ave})?

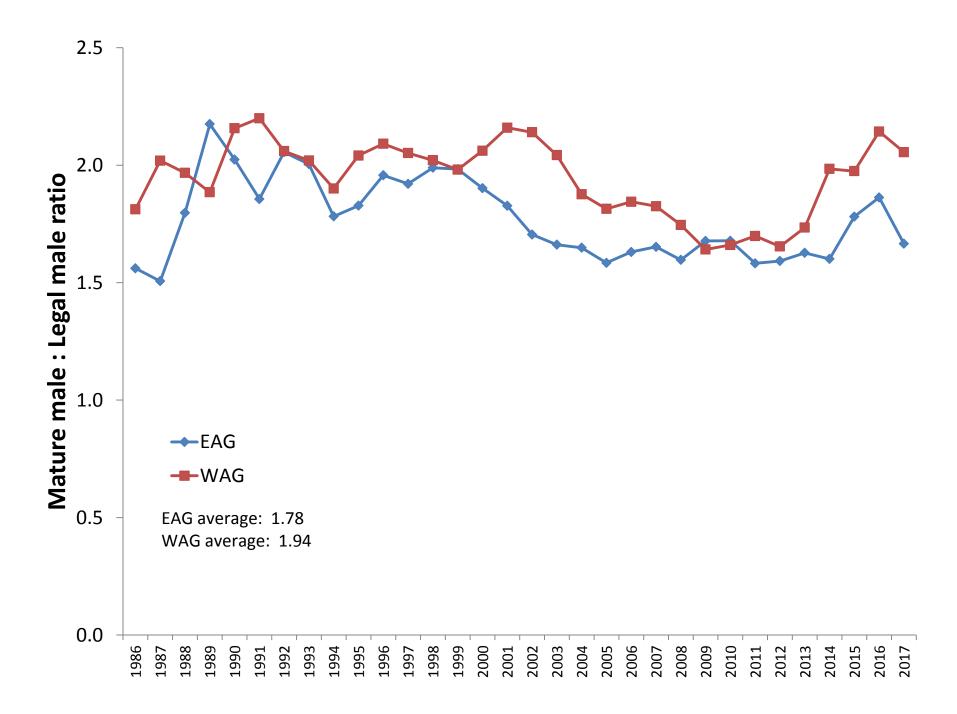

"The mean MMB calculation time period should be 1987-2012. This was to avoid highly variable recruitments outside this time period that may interfere with the MMB estimates. This time period was accepted by the May 2017 CPT and the June 2017 SSC." (Shareef Siddeek, pers. comm.)

EAG (model scenario 9)



Exploitation rate on mature male abundance (MMA)

How do the proposed exploitation rates in the previous slide compare to historical exploitation rates?



TAC calculation core elements

- 1. Threshold for opening/closing the fishery
- 2. Apply exploitation rate to mature male <u>abundance</u>.
- 3. Convert this to a weight by multiplying the number of crabs by the average legal crab weight (use previous year fishery weight).
- 4. Cap TAC at maximum exploitation rate on legal males:
 - Protects against over-harvest of legal crabs in years when ratio of mature:legal males is high (i.e., low relative abundance of legals compared to matures)
 - Evaluate 25%, 35%, (?) legal male abundance

Maximum exploitation on legal male abundance

- Because TAC is based on <u>mature male</u> abundance, this measure provides a level of protection against over harvesting <u>legal males</u> when legal males are in relatively low abundance compared to mature males
- Other BSAI crab harvest strategies: BBRKC: 50%,
 StMatt BKC: 25%, PIBKC: 20%, Tanner: 50%, snow: 58% "exploited" legals
- Evaluate 25%, 35%, (other?) legal male abundance

Maximum exploitation on legal male abundance

If the average ratio of mature males to legal males is approximately 2, then is maximum legal exploitation rate of 2 x mature male exploitation rate an appropriate approach?

Example:

2 x 15% mature male exploitation = 30% cap

1.8 x 15% mature male exploitation =27% cap

25% or 35% cap is in the ballpark......other values to consider?

What about bycatch mortality?

2017/18 maximum TAC relative to avoiding ABC = 9.999 million lb total fishery mortality

	1	Mortality
Assumptions	(r	million lb)
Assume max mortality in groundfish fisheries, 05/06-16/17 =		0.13
Assume max mortality in other crab fisheries		0.00
	<u>Subtotal</u>	0.13
Remaining for directed (incl. bycatch mort), mill lb (ABC-Subtotal) =	9.87	
Assume maximum (lb discard mort)/(lb retained) in directed fishery OF 106 16/17 -	0.130	
Assume maximum (lb discard mort)/(lb retained) in directed fishery, 05/06-16/17 =	0.130	0.73
Maximum TAC = (remaining for directed)/(1+0.130) =		8.73

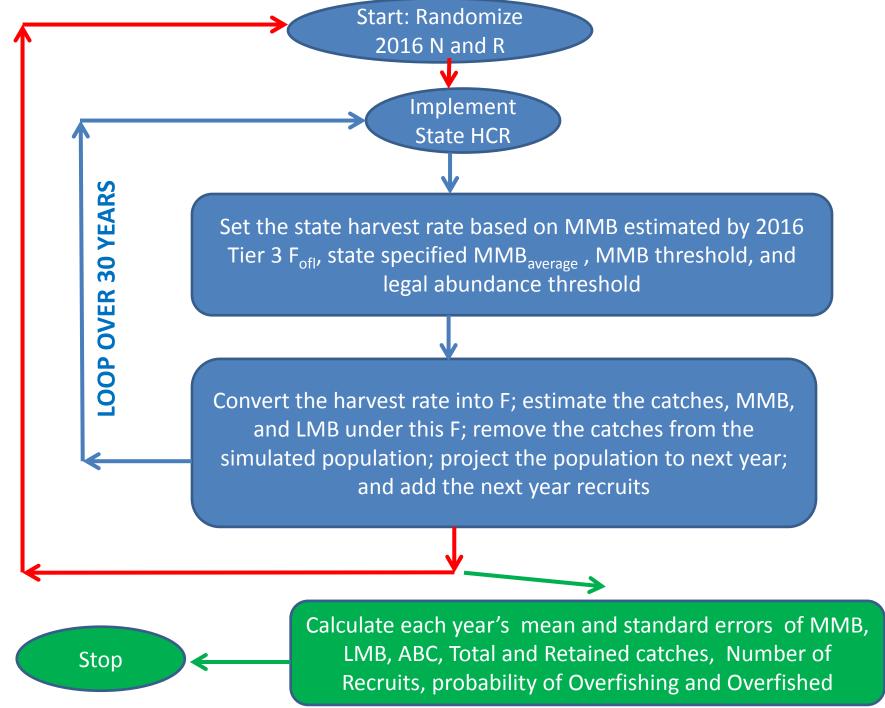
To avoid exceeding the ABC, combined TACs should not exceed this number

Next Steps.....

- Evaluation of proposed harvest strategy scenarios
 - Model population projections

Simulation Outlines

Introduction


- Use 2017 model (17AD17) estimated parameters, recruits, and terminal year (2016) abundance
- Project the 2016 abundance for 30 years with 1000 random replicates
- Replicates based on 1000 log normal random errors on estimated abundance and 1000 uniform random errors on estimated number of recruits
- Number of recruits estimated two ways: (1) random choice from 2017 model estimated recruits for 1987-2012; (2) Ricker stock-recruitment model estimated recruits (with 8 year time-lag from spawning year to recruitment year)

Randomization

Simulation Outlines

Control
Rules Used
for
Projection

- Project the abundance for 30 years, separately under (1) Tier 3 control rule and (2) the state harvest control rule
- (1) (a) Project with no directed fishery (F=0). This is the base projection and approximately equal to dynamic B₀ projection
- (1) (b) Project with F_{35%}, the allowed maximum F for OFL and ABC estimation
- (2) Project with the state harvest control rule (next slide)

Proposed State Harvest Control Rule

	Sc1a	Sc1b	Sc2	Sc3	Sc4	Sc5a	Sc5b	Sc6	Sc7	Sc8	Sc9
Years for mean MMB (MMB _{ave})	1987– 2012	1987 – 2012	1987 – 2012	1987 – 2012	1987 – 2012	1987 – 2012	1987 – 2012	1987 – 2012	1987 – 2012	1987 – 2012	1987– 2012
Threshold for opening/closing	25% MMB _{ave}	50% MMB _{ave}	25% MMB _{ave}	25% MMB _{ave}	25% MMB _{ave}	25% MMB _{ave}	50% MMB _{ave}	25% MMB _{ave}	25% MMB _{ave}	25% MMB _{ave}	25% MMB _{ave}
Exploitation rate when MMB <mean MMB</mean 	$\frac{MMB}{MMB_{ave}} \times 0.1$	$\frac{MMB}{MMB_{ave}} \times 0.1$	$\frac{MMB}{MMB_{ave}} \times 0.125$	$\frac{MMB}{MMB_{ave}} \times 0.15$	$\frac{MMB}{MMB_{ave}} \times 0.2$	$\frac{MMB}{MMB_{ave}} \times 0.1$	$\frac{MMB}{MMB_{ave}} \times 0.1$	$\frac{MMB}{MMB_{ave}} \times 0.125$	$\frac{MMB}{MMB_{ave}} \times 0.15$	$\frac{MMB}{MMB_{ave}} \times 0.2$	$\frac{MMB}{MMB_{ave}} \times 0.3$
Max Exploitation rate when MMB≥mean MMB	10%	10%	12.5%	15%	20%	10%	10%	12.5%	15%	20%	30%
Max exploit. rate on legal male abundance	25%	25%	25%	25%	25%	35%	35%	35%	35%	35%	35%

EAG Example Results: From 30-yr Projection: Dynamic B₀

	No Directed Fishery								
Year	LMB	95% Lower Limit	95% Upper Limit	MMB	95% Lower Limit	95% Upper Limit			
2016	9,581	6,683	13,203	15,036	10,488	20,721			
2017	12,719	8,872	17,529	16,433	11,585	22,498			
2018	14,686	10,264	20,233	17,402	12,692	23,027			
2019	15,731	11,271	21,300	18,075	13,722	23,454			
2020	16,350	12,113	21,410	18,555	14,571	23,530			
2021	16,760	12,977	21,539	18,906	15,142	23,571			
2022	17,062	13,551	21,434	19,152	15,772	23,409			
2023	17,279	14,069	21,293	19,331	16,234	23,235			
2024	17,436	14,533	21,034	19,464	16,654	22,869			
2025	17,549	14,872	20,780	19,572	16,841	22,829			
2026	17,639	15,139	20,643	19,652	17,019	22,541			
2027	17,712	15,326	20,478	19,695	17,077	22,456			
2028	17,762	15,343	20,321	19,712	17,223	22,486			
2029	17,778	15,479	20,246	19,734	17,279	22,275			
2030	17,788	15,561	20,237	19,756	17,328	22,199			
2031	17,801	15,587	20,156	19,781	17,413	22,371			
2032	17,820	15,659	20,187	19,803	17,523	22,539			
2033	17,841	15,673	20,265	19,812	17,541	22,448			
2034	17,857	15,813	20,380	19,816	17,584	22,231			
2035	17,858	15,778	20,274	19,828	17,626	22,249			
2036	17,865	15,805	20,111	19,836	17,674	22,125			
2037	17,873	15,833	20,079	19,840	17,712	22,310			
2038	17,880	15,935	20,089	19,836	17,661	22,303			
2039	17,878	15,955	20,137	19,837	17,646	22,219			
2040	17,877	15,873	20,119	19,835	17,576	22,202			
2041	17,875	15,765	20,081	19,836	17,627	22,307			
2042	17,874	15,806	20,137	19,837	17,692	22,218			
2043	17,875	15,913	20,129	19,843	17,584	22,250			
2044	17,876	15,856	20,087	19,851	17,633	22,151			
2045	17,887	15,838	20,037	19,842	17,674	22,093			

Industry Input

- What does industry want to see in a harvest strategy?
 - General and specific recommendations for analysis
- Continued cooperative survey?
 - Help with spatio-temporal CPUE standardization
 - Bolster assessment data inputs

Feedback?