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Introduction

Estimates of management quantities from the 2015 assessment for snow crab in the Eastern Bering Sea
were bimodal. That is, when fitting the model with different starting values for estimated parameters,
different ‘solutions’ were converged upon. These solutions had gradients less than 0.01 and produced a
variance-covariance matrix, indicating they were stable local minima. This bimodality was shown to be a
product of the use of piece-wise linear growth models in which a change-point was estimated that determined
at what size the growth model switched from one linear function describing the relationship between pre-molt
length and post-molt length to another. One of the key problems with this model formulation was that data
were not available over the region in which the change point was estimated to occur. Consequently, the
precise location of the change point was uncertain.

Poorly-behaved likelihood surfaces are a known problem for some size-structured assessment models. Until
2016, issues of instability in the likelihood surface (and the resulting bimodality in management quantities)
were addressed in the snow crab assessment by ‘jittering’ the starting values for estimated parameters
(i.e. choosing different random values within the bounds of each estimated parameter), running the model
many times after different random jitters, then choosing the model that had the lowest likelihood. However,
in 2016 the stable local minima had likelihoods such that none appeared to be significantly better than the
other. Consequently, there was no defensible way to choose between the modes of management quantities
using maximum likelihood methodologies.

The proposed (and adopted) solution to bimodal management quantities with similar likelihoods was to use
Bayesian methods to allow the uncertainty around the modes in management quantities to be incorporated
into management advice. This appeared to address the problem by producing an OFL that was lower than
the highest mode estimated via maximum likelihood methods and higher than the lowest mode estimated via
ML methods. Bayesian methodologies presented an attractive stop-gap in representing model uncertainty
by propagating uncertainty forward into the management quantities by producing posterior distributions
of the management quantities. These distributions also provide an avenue to base the buffers applied to
the total allowable catches on a quantitative measure of uncertainty in the data, rather than an arbitrary
number. However, Bayesian methodologies are time consuming to implement (running Markov Chain Monte
Carlo algorithms can take several days), determining whether or not a model has ‘converged’ is difficult, and
specifying priors can be a contentious endeavor that can influence the outcome of the assessment.

During 2017, a model was proposed (and adopted) that estimated mature female natural mortality. When this
model was ‘jittered’, it no longer showed the bimodality in management quantities. Furthermore, additional
growth data became available in late 2017, after the assessment was presented. These data span the gap in
the growth data in which a change point is estimated. Given this background, there are two objectives for
this document. First, I evaluate the impact of adding the new growth data into the model on the stability
and magnitude of estimates of quantities used in management. Second, I explore the differences and merits
of Bayesian methodologies when compared to maximum likelihood frameworks.
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Methods

The results from four models are presented here.

1. 2016_oldgrowth:

• Accepted model for 2016 with slight changes introduced in 2017
• Survey data before 1982 dropped
• Split survey selectivity period in 1987
• Estimate survey availability parameters for BSFRF survey in logit space with a penalty
• Uses growth data from 2016 and 2017 assessments (i.e. growth relationships are fit to 18 and 22

observations of pre/post molt lengths for females and males, respectively)
• Natural mortality for mature females is fixed
• Uses catch and survey data through 2017 (i.e. is comparable with the 2017 models below)

2. 2016_newgrowth:

• Identical to 2016_oldgrowth, except the additional growth data provided after the 2017 assessment
season are incorporated into the model. The additional data include 25 and 45 new pre/post molt
observations for males and females, respectively.

3. 2017_oldgrowth:

• Accepted model for 2017
• Uses growth data from 2016 and 2017 assessments
• Natural mortality for mature females is estimated

4. 2017_newgrowth:

• Identical to 2017_oldgrowth, but the additional growth data are used

Models were all jittered 100 times then runs that did not have a gradient less than 0.002 were removed.
MCMC was performed for model 2017_newgrowth, which entailed running 10 million iterations, saving every
5000th, then thinning the resulting chain to eliminate auto-correlation. Model 2017_newgrowth was also
altered so that management quantities (e.g. the OFL, B35, F35, FOFL) were declared as ‘sdreport’ variables,
which allowed their standard deviations to be calculated. This was accomplished by adding a chunk of code
to the procedure section that executed the functions that calculate management quantities when it is the
’sd_phase“.

if(sd_phase())
{

Find_F35();
Find_OFL();

}

Parameter estimates, contributions to the objective function of each likelihood component, calculated
management quantities, jittered output, and models fits to all data sources are included below.
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Results

The jittering analysis demonstrated the bimodality of the 2016 accepted model (2016_olddata), but the
remaining models did not present bimodality in management quantities (Figure 1 & Figure 2). This shows
that the bimodality in management quantities can be removed either by adding the new growth data for
females or by estimating mature female natural mortality (M). This observation raises the question of which
‘fix’ for bimodality should be adopted: using the new growth data, estimating mature female M, or both.

Model fits and population processes

Models that estimated mature female M fit the data much better overall as seen through the objective
function value (Table 3). Large improvements to the fits to the female growth data (Figure 3) and the mature
survey biomass (Figure 4) were a key reason for this change. Estimating mature female M improved the fits
to the female mature biomass at the time of the survey by reducing the estimated biomasses. If mature female
M was not estimated, a broken-stick model was still estimated to fit the female growth data. Presumably,
this was a result of the model needing to ‘kill off’ the biomass resulting from larger sized individuals more
quickly than the specified natural mortality allows in order to fit the data, so estimated growth was slower for
larger individuals when natural mortality was fixed for mature females. These improvements to the likelihood
came even with a large increase in the penalty associated with the prior on M (Table 3). Estimating mature
female M also restored the expected relationship between female and male natural mortality–female M is
expected to be higher than male (Table 2). However, it also decreased In models where mature female M was
not estimated, M for mature females was specified as 0.23 per year, mature male M was estimated as 0.25
per year, immature M (for both sexes) was estimated as 0.43 per year. In models where mature female M
was estimated, M for mature females was estimated as 0.36 per year, mature male M was estimated as 0.27,
immature M (for both sexes) was estimated as 0.28.

In addition to changing estimated growth for females, estimating M for mature females had relatively large
impacts on survey selectivity (Figure 5). Survey catchability moved from ~ 0.5 for females in the second survey
era (1989-present) to 1 when estimating M for mature females. Catchability for males moved only slightly in
the second survey era when estimating mature female M, but smaller crabs were more selected. Estimated
catchabillity increased in the first survey era (1982-1989) for both sexes when estimating mature female M. An
estimated survey catchability of 1 for females was somewhat concerning, given BSFRF experimental data that
suggest otherwise. From a modeling perspective, it is perhaps unsurprising, though. The model seemed to
‘want’ to correct for some of the observed fluctuations in female biomass by using fishing mortality–increasing
catchabillity magnifies the influence of whatever fishing mortality was occurring on females. Couple this with
a relatively small contribution of the BSFRF data to the objective function and it is perhaps unsurprising
that estimated catchability for females is estimated as high as it is.

Retained catch data were fit by all models well, with little discernible differences among models (Figure 6).
Female discard data were fit adequately given the specified uncertainty (Figure 6 & Table 3). Male discard
data during the period for which data exist (early 1990s to the present) were well fit by every model with little
discernible difference (Figure 6). Fits to the trawl data were adequate for all models given the uncertainty in
the data (Figure 6).

Retained catch size composition data were fit well by all models (Figure 7); trawl size composition data were
generally well fit in most years. All models performed similarly in fitting the trawl size composition data
(Figure 8 & Table 3). Fits to survey size composition data were not very different among scenarios (to the
eye; Figure 9 & Figure 10), but 2017_oldgrowth fit the data better according to the likelihoods (Table 3).

Small differences in the probability of maturing at size existed among models. For males, models in which M
for mature females was estimated produced slightly higher probabilities of maturing for crab in the 50-100mm
range than models that did not estimate M for mature females (Figure 11). The pattern was somewhat more
complicated for females because both the estimation of M for mature females and the change in the growth
curve as a result of additional growth data influence the estimated probability of maturing. The largest
changes in the probability of maturing for females among models occured in the 50-70mm range and the
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model in which the additional growth data were used and mature female M was estimated produced the
highest probabilities of maturing over this range. Other size classes of females had very similar estimated
probabilities of maturing across models.

Small changes in estimates of directed fishing mortality existed among the models in the early years of
the estimated time series, but recent estimates were similar for all models (Figure 12). Fishing mortality
associated with bycatch from the trawl fisheries was estimated to be higher when mature female M was
estimated, and these changes in trawl F were accompanied by estimated trawl selectivity that was slightly
shifted to larger sizes. Estimated female discard mortality increased by nearly 50% when estimating mature
female M, but was still very small compared to other sources of fishing mortality (e.g. 0.003 vs average
directed F of ~ 0.8).

Fits to the biomass estimates from the BSFRF selectivity experiments were nearly identical for all models
(Figure 4). Slight differences in fits to the length composition data for the BSFRF selectivity experiments
existed between models (Figure 13)–models in which mature female M was estimated fit the data better
(Table 3) than those that did not. Large differences existed among model estimates of availability and
selectivity for the BSFRF selectivity experiments (Figure 14).

Estimated patterns in recruitment were very similar for all models (Figure 15). Models in which mature
female M was estimated produced recruitment time series that had a smaller magnitude than those models
that fixed mature female M. As in previous years’ assessments, no clear relationship existed between spawning
biomass and recruitment. Also, regardless of the model used, the large recruitment event starting around
2014 appears to have persisted.

Calculated OFLs and ABC

Medians of the posterior densities of the OFLs calculated for the suite presented models ranged from 24.91
to 29.92kt (Figure 16 & Table 4). Differences in OFLs were a result of differences in estimated MMB (see
above), calculated B35% (which ranged from 139.9 to 150.19kt), Figure 16), F35% (which ranged from 1.28 to
1.36 yr-1, Figure 16), and FOFL (which ranged from 0.88 to 0.93 yr-1, Figure 16).

Estimates of the distributions of management quantities from maximum likelihood-based standard errors
and draws from the posterior distribution via an MCMC algorithm were similar, but not identical, for the
2017_newgrowth model (Figure 16). The medians of the distribution of OFL and B35% were more similar
across Bayesian and maximum likelihood methods than F35% and FOFL. Uncertainty in the estimated
time series of mature male biomass was also similar for Bayesian and maximum likelihood methodologies
(Figure 17).

Discussion

Models in which mature female natural mortality was estimated fit the data better than models models in
which mature female M was fixed. Estimating mature female M also eliminated the bimodality in management
quantities and restored the proper relationship between estimated natural mortality for females and males.
However, an increase of survey catchability for females to 1 was an unfortunate knock-on effect of this model
change, which did not occur when natural mortality was fixed for mature females. Adding the additional
growth data also removed the bimodality from estimates of management quantities resulting from fitting a
model that fixed mature female M. Given the issue of increased estimated catchability relates primarily to
females, and therefore will not impact the management quantities drastically, estimating natural mortality
and incorporating the new growth data may be the most reasonable steps to improve the assessment for snow
crab this year.

Estimating mature female M and incorporating the new growth data are recommended steps to improving the
realism of the model, but these measures resulted in survey catchability of 1 for females. A revisitation of the
treatment of the BSFRF survey data may help with this issue. Currently, an ‘availability’ curve is estimated
(freely), but an empirical measure of availability could be generated by comparing the length composition

5



data from the BSFRF data to the associated NMFS data. Reconsidering the assumption of a 50/50 sex
ratio in recruitment might also address the ‘runs’ of auto-correlation in the residuals of the fits to the survey
mature biomass data. In general, the female mature biomass at the time of the survey is overestimated and
male mature biomass at the time of the survey is underestimated (Figure 4). That said, little biological
evidence (other than the runs in residuals from the assessment) exists to suggest the sex ratio in recruitment
should deviate from 50/50. A possible hypothesis behind different sex ratios in recruitment is that initial
sex ratios are 50/50 (i.e. the sex ratio at the time of fertilization), but mortality is size-based. Females may
grow more slowly than males at smaller sizes (which is partially corroborated by the observed larger range of
growth increments for males in the ~20mm size classes Figure 3). Consequently, females entering the model at
27.5 mm will have undergone more natural mortality than males because it takes them longer to grow to the
size at which they recruit to the model, which would suggest a potentially different sex ratio at recruitment
to the model. Differences in movement rates by sex from northern areas beyond the reach of the survey may
also be a potential avenue to explore differences in sex ratio in recruitment.

The addition of the new growth data and the estimation of mature female M removed the bimodality in
management quantities, which also removed the need to use MCMC to characterize posterior distributions
of management quantities that spanned both modes. Bayesian methodologies can be a useful tool in
assessment, but, when bimodality does not exist in model estimates, the differences in posterior distributions
of management quantities compared to distributions generated by using the estimated standard errors were
small for the snow crab assessment. The differences in these distributions were likely at least partially
influenced by the assumed priors in the assessment. Given the time required to run MCMC and the time
required to properly specify every prior in the model, maximum likelihood methods may be preferable to
Bayesian methods for snow crab assessments performed in the near future. However, if circumstances arise
in which management quantites are again bimodal, MCMC may again prove a useful tool for calculating
quantities used in management under uncertainty.
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Table 1: Parameter bounds and symbols

Parameter Lower Upper Symbol Process
af -100 0 αf growth
am -50 0 αm growth
bf 1 10 βf,1 growth
bm 1 5 βm,1 growth
b1 1 1.5 βf,2 growth
bf1 1 2 βm,2 growth
deltam 10 50 δm growth
deltaf 5 50 δf growth
st_gr 0.5 0.5 stgr growth
growth_beta 0.749 0.751 βg growth
mateste -6 -1e-10 Ωm,l maturity
matestfe -6 -1e-10 Ωf,l maturity
mean_log_rec “-inf” Inf Recavg recruitment
rec_devf -15 15 Recf,dev,y recruitment
alpha1_rec 11.49 11.51 αrec recruitment
beta_rec 3.99 4.01 βrec recruitment
mnatlen_styr -3 15 λmale,v,l Initial N
fnatlen_styr -10 15 λfem,v,l Initial N
log_avg_fmort “-inf” Inf F log

avg,dir Fishing
mortality

fmort_dev -5 5 F log
dev,dir,y Fishing

mortality
log_avg_fmortdf -8 -1e-04 F log

avg,disc Fishing
mortality

fmortdf_dev -15 15 F log
dev,disc,y Fishing

mortality
log_avg_fmortt -8 -1e-04 F log

avg,trawl Fishing
mortality

fmortt_dev_era1 -15 15 F log
dev,trawl,era1 Fishing

mortality
fmortt_dev_era2 -15 15 F log

dev,trawl,era2 Fishing
mortality

log_avg_sel50_mn 4 5 S50,new,dir Fishing
selectivity

log_avg_sel50_mo 4 5 S50,old,dir Fishing
selectivity

fish_slope_mn 0.1 0.5 Sslope,m,d Fishing
selectivity

fish_fit_slope_mn 0.05 0.5 Sslope,m,d Fishing
selectivity

fish_fit_sel50_mn 85 120 S50,old,dir Fishing
selectivity

fish_slope_mo2 1.9 2 Sslope,m,d Fishing
selectivity

fish_sel50_mo2 159 160 S50,old,dir Fishing
selectivity

fish_slope_mn2 0.01 2 Sslope,m,d Fishing
selectivity

fish_sel50_mn2 100 160 S50,old,dir Fishing
selectivity
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Parameter Lower Upper Symbol Process
fish_disc_slope_f 0.1 0.7 Sslope,m,d Fishing

selectivity
fish_disc_sel50_f 1 5 S50,old,dir Fishing

selectivity
fish_disc_slope_tf 0.01 0.3 Sslope,trawl Fishing

selectivity
fish_disc_sel50_tf 30 120 S50,trawl Fishing

selectivity
srv1_q 0.2 1 qm,era1,surv Survey

selectivity
srv1_q_f 0.2 1 qf,era1,surv Survey

selectivity
srv1_sel95 30 150 S95,era1,surv Survey

selectivity
srv1_sel50 0 150 S50,era1,surv Survey

selectivity
srv2_q 0.2 1 qm,era2,surv Survey

selectivity
srv2_q_f 0.2 1 qf,era2,surv Survey

selectivity
srv2_sel95 50 160 S95,era2,surv Survey

selectivity
srv2_sel50 0 80 S50,era2,surv Survey

selectivity
srv3_q 0.2 1 qm,era3,surv Survey

selectivity
srv3_sel95 40 200 S95,m,era2,surv Survey

selectivity
srv3_sel50 25 90 S50,m,era2,surv Survey

selectivity
srv3_q_f 0.2 1 qf,era3,surv Survey

selectivity
srv3_sel95_f 40 150 S95,f,era2,surv Survey

selectivity
srv3_sel50_f 0 90 S50,f,era2,surv Survey

selectivity
srvind_q 0.1 1 qm,09,ind Survey

selectivity
srvind_q_f 0.01 1 qf,09,ind Survey

selectivity
srvind_sel95_f 55 120 S95,f,09,ind Survey

selectivity
srvind_sel50_f -50 55 S50,f,09,ind Survey

selectivity
srv10in_q 0.1 1 qm,10,ind Survey

selectivity
srv10ind_q_f 0.01 1 qf,10,ind Survey

selectivity
selsmo10ind -4 -0.001 SelVecMaleInd09 Survey

selectivity
selsmo09ind -4 -0.001 SelVecMaleInd10 Survey

selectivity
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Parameter Lower Upper Symbol Process
Mmult_imat 0.2 2 γnatM,imm Natural

mortality
Mmult 0.2 2 γnatM,mat,m Natural

mortality
Mmultf 0.2 2 γnatM,mat,f Natural

mortality
cpueq 0.0000877 0.00877 qcpue CPUE q
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Table 2: Estimated parameter values by scenario (these are maxi-
mum likelihood estimates)

Parameter 2016_oldgrowth 2016_newgrowth 2017_oldgrowth 2017_newgrowth
af -4.96 -1.39 -5.26 0
am -12.41 -0.92 -5.34 -0.85
bf 1.52 1.35 1.53 1.29
bm 1.84 1.37 1.52 1.36
b1 1.15 1.17 1.15 1.17
bf1 1.04 1.01 1.04 1.33
deltam 27.41 32.6 32.13 32.54
deltaf 34.31 41.29 34.13 27.45
mateste vector vector vector vector
matestfe vector vector vector vector
rec_devf vector vector vector vector
mnatlen_styr vector vector vector vector
fnatlen_styr vector vector vector vector
log_avg_fmort -0.33 -0.3 -0.29 -0.24
fmort_dev vector vector vector vector
log_avg_fmortdf -6.34 -6.28 -5.66 -5.89
fmortdf_dev vector vector vector vector
log_avg_fmortt -4.82 -4.81 -4.61 -4.53
fmortt_dev_era1 vector vector vector vector
fmortt_dev_era2 vector vector vector vector
log_avg_sel50_mn 4.67 4.67 4.67 4.67
fish_slope_mn 0.19 0.19 0.19 0.19
fish_fit_slope_mn 0.42 0.43 0.43 0.43
fish_fit_sel50_mn 96.08 96.04 96.07 96.02
fish_disc_slope_f 0.24 0.25 0.25 0.26
fish_disc_sel50_f 4.26 4.26 4.25 4.23
fish_disc_slope_tf 0.09 0.09 0.07 0.07
fish_disc_sel50_tf 109.02 108.53 112.95 114.26
srv2_q 0.34 0.35 0.43 0.44
srv2_q_f 0.35 0.39 0.51 0.52
srv2_sel95 57.52 58.4 54.52 55.78
srv2_sel50 39.42 40.69 38.26 39.05
srv3_q 0.68 0.69 0.71 0.71
srv3_sel95 57.91 58.9 48.02 48.89
srv3_sel50 38.91 39.4 34.38 34.57
srv3_q_f 0.54 0.56 1 1
srv3_sel95_f 43.57 44.87 45.58 46.96
srv3_sel50_f 33.76 34.52 35.22 35.99
srvind_q 1 1 1 0.3
srvind_q_f 0.11 0.11 0.17 0.17
srvind_sel95_f 55 55 55 55
srvind_sel50_f 49.26 49.29 49.39 49.47
srv10ind_q_f 1 1 1 1
selsmo10ind vector vector vector vector
selsmo09ind vector vector vector vector
Mmult_imat 1.87 1.88 1.22 1.21
Mmult 1.07 1.07 1.16 1.16
Mmultf 1.55 1.52
cpueq 0 0 0 0
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Table 3: Contribution to the objective function by individual like-
lihood component by modeling scenario. Note that some of the
model scenarios involve changing the weightings of data sources or
adding data which invalidate the direct comparison of likelihoods
for a data source among models.

Likelihood
component 2016_oldgrowth 2016_newgrowth 2017_oldgrowth 2017_newgrowth
Recruitment
deviations

38.37 39.41 38.81 39.17

Initial numbers
old shell males
small length
bins

5.14 5.07 4.73 4.71

ret fishery
length

309.36 308.09 305.31 306.71

total fish length
(ret + disc)

866.58 866.88 866.83 867.41

female fish
length

236.3 237.66 233.89 233.65

survey length 4328.06 4316.68 4266.95 4329.5
trawl length 311.92 308.4 265.69 268
2009 BSFRF
length

-86.59 -86.89 -93.56 -90.2

2009 NMFS
study area
length

-68.52 -69.19 -74.83 -72.74

M multiplier
prior

18.33 18.68 81.53 73.62

maturity
smooth

37.72 45.09 36.73 43.69

growth males 41.81 141.12 36.46 141.78
growth females 127.54 405.36 117.57 359.35
2009 BSFRF
biomass

0.37 0.39 0.38 0.24

2009 NMFS
study area
biomass

0.09 0.1 0.12 0.21

cpue q 0.22 0.22 0.18 0.18
retained catch 3.8 3.92 3.88 3.94
discard catch 145.49 152.04 157.39 152.54
trawl catch 8.17 8 7.08 6.9
female discard
catch

5.33 5.32 5.36 5.35

survey biomass 314.7 310.86 281.73 282.81
F penalty 25.13 25.31 24.64 25.3
2010 BSFRF
Biomass

3.83 3.21 20.78 20.61

2010 NMFS
Biomass

1.44 2.01 1.45 1.4

Extra weight
survey lengths
first year

564.67 564.95 553.32 551.4
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Likelihood
component 2016_oldgrowth 2016_newgrowth 2017_oldgrowth 2017_newgrowth
2010 BSFRF
length

-49.09 -51.5 -49.58 -47.24

2010 NMFS
length

-55.91 -56.49 -58.37 -57.78

smooth
selectivity

2.45 2.96 2.99 1

smooth female
selectivity

0 0 0 0

init nos smooth
constraint

47.49 48.07 45.81 45.85

Total 7184.2 7555.73 7083.27 7497.36
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Table 4: Changes in management quantities for each scenario con-
sidered. Reported management quantities are maximum likelihood
estimates.

Model MMB B35 F35 FOFL OFL
2016_oldgrowth 92.18 150.2 1.35 0.9 26.06
2016_newgrowth 89.66 147.2 1.33 0.88 24.91
2017_oldgrowth 96.97 140.5 1.28 0.88 29.92
2017_newgrowth 94.36 139.9 1.36 0.93 28.92
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Table 5: Predicted mature male (MMB), mature female (FMB),
and males >101mm biomass (1000 t) and numbers (in millions) at
the time of the survey from the chosen model. Columns 2-5 are
subject to survey selectivity; columns 6-9 are the population values
(e.g. they are not modified by multiplying them by a selectivity
curve–they are estimates of the underlying population). These
are maximum likelihood estimates that differ slightly from median
posterior values.

Survey
year FMB MMB

Male >101
biomass

Male >101
(millions) FMB MMB

Male >101
biomass

Male >101
(millions)

1982 65.29 124.4 34.21 65.04 133.8 282.5 57.02 108.4
1983 53.95 131.9 57.64 103.2 109.7 299.8 96.06 171.9
1984 41.12 139.1 78.74 135.5 83.72 316.3 131.2 225.8
1985 40.6 132.9 81.51 138 83.15 302.4 135.8 230
1986 51.31 116.8 48.89 82.54 105.5 266.2 110.8 187.1
1987 85.6 111.7 41.27 71.14 176.6 255.3 93.58 161.3
1988 207.1 188.3 36.48 63.24 210.3 265.3 82.71 143.4
1989 235.4 219.7 40.93 72.49 239.3 309.5 92.8 164.4
1990 218.4 284.4 69.48 121.5 221.6 400.4 157.5 275.4
1991 175.9 270.7 66.75 115.5 178.4 381 151.3 261.9
1992 140.4 226.6 53.45 93 142.4 319 121.2 210.8
1993 187.9 193.7 74.3 125.9 191.3 272.9 104.4 176.9
1994 216.9 165 44.8 74.8 220.4 232.7 62.93 105.1
1995 197.6 182.5 42.9 75.83 200.5 257.2 60.27 106.5
1996 156.7 257.3 103.3 181.4 158.9 362.1 145.2 254.8
1997 117 308.9 166.3 279.6 118.6 434.4 233.6 392.7
1998 86.88 234.2 119.6 198.7 88.08 329.5 168 279.1
1999 74.39 150 62.27 104.6 75.51 211 87.48 147
2000 72.47 121 48 80.16 73.61 170.3 67.44 112.6
2001 65.72 102 36.71 62.01 66.69 143.6 51.57 87.11
2002 55.32 95.1 34.35 59.33 56.12 133.9 48.26 83.35
2003 50.43 99.41 43.63 74.38 51.2 139.9 61.29 104.5
2004 58.9 99.7 48.27 80.47 59.89 140.3 67.8 113
2005 77.47 94.91 42.91 71.27 78.8 133.7 60.28 100.1
2006 88.02 96.46 37.93 64.41 89.43 135.9 53.28 90.49
2007 87.2 115.5 47.95 82.49 88.53 162.7 67.36 115.9
2008 74.77 134.9 63.44 108.6 75.85 189.9 89.13 152.5
2009 59.76 146.8 78.04 131.1 60.61 206.6 109.6 184.2
2010 60.49 142.5 80.08 132.8 61.48 200.5 112.5 186.6
2011 64.95 122.8 66.22 109.3 65.98 172.8 93.02 153.5
2012 63.26 91.32 37.52 63.56 64.23 128.6 52.71 89.29
2013 61.59 83.71 30.41 53.43 62.55 117.9 42.72 75.06
2014 61.45 89.29 37.46 64.36 62.42 125.7 52.62 90.42
2015 59.34 83.59 33.86 57.59 60.25 117.7 47.56 80.9
2016 75.52 87.45 36.14 61.38 76.83 123.2 50.78 86.22
2017 141.6 107.7 45.45 76.38 144.3 151.9 63.84 107.3
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Table 6: Maximum likelihood estimates of predicted mature male
biomass at mating, mature female biomass at mating (in 1000
t), and recruitment (millions) from the chosen model. These are
maximum likelihood estimates that differ slightly from the median
posterior values.

Survey year
Mature male

biomass

Mature
female
biomass Recruits

1982 225.7 107.6 266.1
1983 240.6 88.16 1006
1984 236.5 67.28 1526
1985 210 66.83 3753
1986 176.4 84.72 1040
1987 153.2 141.9 2876
1988 155.3 169.1 96.91
1989 189.8 192.3 337.6
1990 193.8 178.1 484.4
1991 180.7 143.3 4152
1992 166.2 114.3 978.9
1993 161.8 153.7 540.4
1994 159.5 176.9 129.9
1995 187.4 161.1 78.67
1996 253.2 127.7 119.2
1997 253.1 95.32 564.8
1998 188.5 70.79 562.4
1999 162.6 60.68 175.1
2000 131.8 59.16 177.4
2001 105.8 53.6 395.7
2002 100.1 45.1 851.8
2003 107.1 41.14 1093
2004 106.7 48.13 653.5
2005 95.79 63.34 502.6
2006 97.91 71.86 106
2007 109.2 71.15 142.5
2008 134.3 60.96 801.5
2009 152.7 48.71 486.3
2010 144.7 49.41 329.9
2011 105 52.93 483.1
2012 77.78 51.62 461.7
2013 75.02 50.26 345
2014 75.29 50.06 1352
2015 80.66 48.41 3421
2016 94.36 61.75 2079
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Table 7: Maximum likelihood estimates of predicted total numbers
(millions), not subject to survey selectivity at the time of the survey.
These are maximum likelihood estimates that differ slightly from
the median posterior values.

Survey year
Total

numbers
1982 5.956
1983 4.907
1984 5.623
1985 7.197
1986 12.82
1987 11.62
1988 14.29
1989 10.7
1990 8.421
1991 6.847
1992 13.04
1993 11.51
1994 9.516
1995 7.22
1996 5.405
1997 4.111
1998 3.967
1999 3.922
2000 3.242
2001 2.736
2002 2.789
2003 3.753
2004 4.972
2005 5.008
2006 4.708
2007 3.678
2008 2.951
2009 3.737
2010 3.724
2011 3.396
2012 3.423
2013 3.414
2014 3.18
2015 5.007
2016 10.56
2017 12.07
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Figure 1: Management quantities after jittering all models. Each grey dot represents a model run–some grey
dots are actually many model runs overlaid on one another.
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Figure 3: Model fits to the growth data
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Figure 7: Model fits to retained catch size composition data
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Figure 8: Model fits to trawl catch size composition data
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Figure 9: Model fits to female survey size composition data. Note that male and female survey selectivity
proportions at length in a given year sum to 1. Consequently, the integral of predicted length compositions
may appear to be different than the integral of the observed length composition data.
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Figure 10: Model fits to male survey size composition data. Note that male and female survey selectivity
proportions at length in a given year sum to 1. Consequently, the integral of predicted length compositions
may appear to be different than the integral of the observed length composition data.
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Figure 11: Estimated probability of maturing
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Figure 12: Model predicted fishing mortalities and selectivities for all sources of mortality
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Figure 13: Model fits to size composition data from summer survey experiments (2009 & 2010)
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Figure 15: Estimated recruitment, fits to stock recruit curve (MMB lagged 5 years), and proportions recruiting
to length bin
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Figure 16: Posterior densities for management quantities by scenario compared to normal distributions
generated using the standard errors estimated via maximum likelihood.
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Figure 17: Comparison of MLE and Bayesian estimates of uncertainty in MMB
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