

D2 - Small Sablefish Discarding

Source: https://www.seafoods.com/

Small Sablefish Discarding

D-2 Discussion Paper

Elements of April 2018 Motion

DMRs

Trade-Offs

Value by Size

Observer Sampling

Structure of the Document

Biological

Trade-Offs

Value by Size

Observer Sampling

Econ / Operational

Management

Structure of the Document

Summary Points

Trade-Offs

Value by Size

Observer Sampling

Action may be warranted by further very strong year classes

No compelling biological reason to prohibit/require discarding

Many years from having scientific basis for sablefish DMRs

Econ/Operational benefits will vary by area and operation

Discards may need to accrue to IFQ

Observer-based DMRs a significant new program

Summary Points

Action may be warranted by further very strong year classes

No compelling biological reason to prohibit/require discarding

Many years from having scientific basis for sablefish DMRs

Econ/Operational benefits will vary by area and operation

Discards may need to accrue to IFQ

Observer-based DMRs a significant new program

Structure of the Document

Biological

Trade-Offs

irade Offs

Value by Size

Observer Sampling

Econ / Operational

Management

2014 Year Class

Contribution to Sablefish Biomass

Contribution to Sablefish Biomass

Arrival in Survey

Trawl Survey

LL Survey

Arrival in Fishery

Trawl Fishery

LL Fishery

Current Size of 2014 Year Class

<u> 2018</u>

• 56-62 cm (22-24 in)

• 1.8-2.3 kg (4-5 lbs)

Future Size of 2014 Year Class

2020

- 58-72 cm (23-28 in)
- 2.36-3.2 kg (5-7 lbs)

More to come...?

Yield per Recruit Analysis

Yield per Recruit Analysis

Discard Mortality Rate Issues

Data needed

Size

Time on deck

Release condition

Water temperature

Discard Mortality Rate Issues

- PFMC (mix of historically based and analogous)
 - Trawl= 50%;
 - HAL= 20% offshore, 7% nearshore
- DFO (no rationale, incentive for trawl)
 - HAL= 15%
 - Pot = 9%,
 - Trawl= 10% first 2 hrs fished, 10% per additional hour
- ADF&G (new methods, analogous)
 - HAL sablefish = 16%
 - HAL halibut = 25%

Min Size Regs

- PFMC (incentive for deeper fishing)
 - 56 cm (22 in)
- DFO (historic since 1945)
 - approximately 55 cm (22 in)
- ADF&G
 - none

Summary Points

Action may be warranted by further very strong year classes

No compelling biological reason to prohibit/require discarding

Many years from having scientific basis for sablefish DMRs

Econ/Operational benefits will vary by area and operation

Discards may need to accrue to IFQ

Observer-based DMRs a significant new program

Structure of the Document

Biological

Value by Size

Observer Sampling

Econ / Operational

Management

Spatial Considerations

Spatial Considerations

Value by Size

Value by Size

Value by Size

Trade Offs

Flexibility
Need to
fill hold
High
grading

Relieve negative impact of small fish Varies by size of IFQ DMRs may be low Whale depredation not accounted for in DMRs

Higher
Price/lb
Greater
expenses
(time,
labor, bait)

Profits greater to processors for larger fish

Longer trips could affect flesh

Processors could avoid negative returns

quality

Enforcement & Observer Issues

Discard Allowance

Minimum Size

Summary Points

Action may be warranted by further very strong year classes

No compelling biological reason to prohibit/require discarding

Many years from having scientific basis for sablefish DMRs

Econ/Operational benefits will vary by area and operation

Discards may need to accrue to IFQ

Observer-based DMRs a significant new program

Structure of the Document

Biological

Value by Size

Observer Sampling

Econ / Operational

Management

Achieving Sablefish TAC

Observer Program Issues

Data quality and potential bias of discard estimates

Vessels with Electronic Monitoring (EM) systems

Data collection methods and observer protocols

Discard Mortality Rate Issues

Data needed

- Size
- Time on deck
- Release condition
- Water temperature

Enforcement Issues

- Release Option
 - Careful release requirement
 - Easiest
 - Necessary under either
- Minimum Size
 - Collecting discarded fish
 - Compliance

Summary Points

Action may be warranted by further very strong year classes

No compelling biological reason to prohibit/require discarding

Many years from having scientific basis for sablefish DMRs

Econ/Operational benefits will vary by area and operation

Discards may need to accrue to IFQ

Observer-based DMRs a significant new program

Boat by Dan Hull

Photo by Sarah Marrinan